
Large Neighborhood Search for Energy Aware
Meeting Scheduling in Smart Buildings

BoonPing Lim1, Menkes van den Briel1, Sylvie Thiébaux1,
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Abstract. One of the main inefficiencies in building management sys-
tems is the widespread use of schedule-based control when operating
heating, ventilation and air conditioning (HVAC) systems. HVAC sys-
tems typically operate on a pre-designed schedule that heats or cools
rooms in the building to a set temperature even when rooms are not
being used. Occupants, however, influence the thermal behavior of build-
ings. As a result, using occupancy information for scheduling meetings
to occur at specific times and in specific rooms has significant energy
savings potential. As shown in Lim et al. [15], combining HVAC control
with meeting scheduling can lead to substantial improvements in energy
efficiency. We extend this work and develop an approach that scales to
larger problems by combining mixed integer programming (MIP) with
large neighborhood search (LNS). LNS is used to destroy part of the
schedule and MIP is used to repair the schedule so as to minimize en-
ergy consumption. This approach is far more effective than solving the
complete problem as a MIP problem. Our results show that solutions
from the LNS-based approach are up to 36% better than the MIP-based
approach when both given 15 minutes.

Keywords: smart buildings, scheduling, large neighborhood search, HVAC
control

1 Introduction

In 2010, electricity expenditures in both residential and commercial buildings
were over 300 billion dollars in the United States alone. About one third of this
consumption can be attributed to space heating, ventilation and air conditioning
(HVAC)3. Hence, with over 100 billion dollars in annual electricity expenditures
even a small percentage improvement in the operation of HVAC systems can
lead to significant savings.

While it is possible to reduce energy consumption by retrofitting buildings
with more efficient HVAC systems, it is far more cost effective to improve their
control algorithms. A building management system (BMS) predominantly oper-
ates on a pre-designed schedule that incorporates a nighttime setback strategy,

3 See Table 1.2.5 at http://buildingsdatabook.eren.doe.gov/



which relaxes the comfort constraints during the night. Bloomfield and Fisk [2]
show that such a strategy leads to significant energy savings. Building man-
agement systems, however, could be far more dynamic by adopting strategies
that consider occupancy information. Occupants impact the thermal behavior
of buildings. For example, a BMS may relax the comfort constraints for those
rooms in the building that are not planned on being used.

HVAC control and meeting scheduling have been studied extensively as sep-
arate problems and only recent work has started to look at integrating the two
problems [15]. This work introduced a mixed integer programming (MIP) model
for energy aware meeting scheduling. Given the highly-constrained nature of
meeting scheduling with HVAC control, solving the integrated problem as a
MIP seems to be a reasonable choice. MIP easily manages the interaction be-
tween meeting scheduling and the impact it has on HVAC energy consumption.
The problem with the MIP-based approach, however, is that it does not scale.
Consequently, in this work we introduce a hybrid solution that combines MIP
with large neighborhood search (LNS) so as to scale to problem sizes that, for
example, companies and universities may face when scheduling meetings and
courses. In order to fine-tune the LNS heuristic we apply automatic parameter
tuning, which is a useful step in producing better results on average.

This remainder of this paper is organized as follows. Section 2 reviews re-
lated work. Section 3 describes the MIP formulation, which consists of an HVAC
model and a scheduling model that are combined into one energy aware meeting
scheduling model. Section 4 describes the LNS heuristic and discusses the auto-
matic parameter tuning. Experimental results are presented in Section 5 and we
conclude with key observations and opportunities for further work in Section 6.

2 Related Work

Energy aware meeting scheduling has gotten more attention in recent years pos-
sibly due to the significant cost saving opportunities. Even simple rules like
consolidating meetings in fewer buildings have proven to be very effective. For
example, Portland State University consolidated night and weekend classes that
were held across 21 buildings into 5 energy efficient buildings. By doing so, they
reported a reduction of 18.5% in electricity consumption over the fall season
compared to the previous three-year average [22].

Majumdar et al. [16] evaluate the performance of a number of scheduling
algorithms that they run through the energy simulation software EnergyPlus
[3]. Some criteria considered in their algorithms include minimizing the number
of rooms, minimizing time between meetings in the same room, and minimizing
room size. The latter performed best when considering only one criterion, but
a more involved A* search with successive calls to EnergyPlus performed best
overall. Similar criteria are considered in the work by Kwak and others [12, 13],
but they use MIP to calculate an energy efficient schedule. Pan et al. [21] use the
criterion of scheduling meetings back-to-back and observed 30% energy savings
when comparing results to existing schedules.



It is important to note that these works minimize energy use without directly
modeling the HVAC system. In our work we integrate meeting scheduling with
HVAC control, because it is of key importance to determine which rooms need
to be heated or cooled and when. For example, sometimes it is more energy
efficient to pre-cool a room rather than cool it at the time of a meeting. In
order to determine the HVAC operation one needs to decide the HVAC control
settings.

Occupancy information, knowing whether or not there are people in a room
and ideally also knowing how many people there are in a room, is at the basis
of moving away from schedule-based control towards model predictive control
(MPC). Schedule-based control is inefficient as it operates HVAC systems ac-
cording to a fixed schedule that often assumes maximum zone occupancy. Old-
ewurtel et al. [20] use MPC, which takes into account weather and occupancy
forecasts to estimate energy saving opportunities. Goyal et al. [10] also take
into account occupancy forecasts and compare the performance of MPC strate-
gies with feedback controllers using occupancy measurements. Their conclusion
is that occupancy predictions can lead to additional energy savings over occu-
pancy measurements especially when ventilation standards change. Currently
the ASHRAE ventilation standard[1] requires that a certain amount of outside
air is mixed with return air from the zones regardless whether a zone is occupied
or not.

Lim et al. [15] combine MPC with meeting scheduling and propose a MIP-
based solution. This model achieves an energy reduction of over 50% when com-
pared to approaches similar to those presented in [10, 13, 16]. The drawback of
this approach is that it does not scale well, which is why we developed a hybrid
solution that combines MIP with LNS. In [15], we presented some of the ini-
tial results on applying LNS on this problem. Here, we significantly expand on
the details of the LNS algorithm, and present extensive results supporting the
quality of the algorithm.

Combining constraint-based methods with neighborhood search methods is
not new. For example, LeBras et al. [14] used LNS with MIP in network design
for a species conservation problem, Di Gaspero et al. [5] used LNS with CP
in balancing bike sharing systems, Rendl et al. [23] applied CP with variable
neighborhood search for homecare scheduling, and Danna et al. [4] used LNS in
job-shop scheduling. We are, however, unaware of its application in the space of
energy aware scheduling in smart buildings.

3 Mixed Integer Programming Model

In this section we present our combined HVAC control and meeting scheduling
formulation. In the description of the model, values of constants are given be-
tween square brackets. We present key elements of the HVAC model and discuss
two updates over Lim et al. [15].

Following Goyal et al. [9, 10], we focus on commercial buildings with VAV-
based HVAC systems, which serve over 30% of the commercial building floor



space in the United States [6]. In particular, we focus on control strategies that
can be applied to each VAV box. Specifically, we determine the supply air tem-
perature and the air flow rate, which are manipulated by a heating coil and
dampers inside the VAV box. A schematic of a VAV-based HVAC system with
two VAV boxes is shown in Figure 1.

Fig. 1: VAV-based HVAC system.

Conditioned air is the air supplied by the air handling unit (AHU) to the
VAV boxes. Energy is consumed by the AHU when mixing outdoor air with
return air and cooling it to a pre-set conditioned air temperature TCA [12.8 ◦C].
The AHU consumes less energy when the outdoor air temperature TOA is closer
to TCA. Energy is also consumed by the VAV box when regulating the supply air
temperature TSA and the supply air flow rate aSA to keep the zone temperature
T within comfort bounds. In particular, the supply fan at the AHU tries to
maintain a constant air pressure through the supply duct and thus may speed
up or slow down depending on air flow rates used by the VAV boxes. Moreover,
in order to keep the zone temperature within comfort bounds the conditioned
air may need to be reheated in the VAV box.

3.1 Objective Function

We want to schedule meetings in such a way that the HVAC energy consumption
is minimized. Thus, the objective function is defined as minimizing the energy use
of fan, air-conditioning and heating operations. Let K = 1, ..., n be an ordered
set of time steps, where the length of each time step is tk − tk−1 = ∆t. Let L
be the set of zones in the building. We assume that each zone corresponds to
one room. In general, however, a zone may correspond to a set of rooms. The
objective function is defined as

Min
∑
k∈K

(
pfank + pcondk +

∑
l∈L

pheatl,k

)
×∆t (1)



where

pfank = β
∑
l∈L

aSAl,k ∀k ∈ K (2)

pcondk = Cpa
(
TOAk − TCA

)∑
l∈L

aSAl,k ∀k ∈ K (3)

pheatl,k = Cpa(TSAl,k − TCA)aSAl,k ∀l ∈ L, k ∈ K (4)

Constraints (2)-(4) determine the values of the variables pfank , pcondk , pheatl,k , which
respectively correspond to the energy consumed by the AHU for air conditioning,
the supply fan for maintaining air pressure, and the VAV box for reheating the
air. It is assumed that a forecast of the outdoor temperature TOAk is available
for each time step k. Also, β is the fan power coefficient [0.65] and Cpa is the
heat capacity of air at constant pressure [1.005 kJ/kg·K].

3.2 HVAC Model

We want to determine the air flow rate aSAl,k and supply air temperature TSAl,k
for each zone l ∈ L and each time step k ∈ K so as to minimize total energy
consumption. In order to keep zone temperature within comfort bounds, we
introduce the variables Tl,k to represent the indoor temperature in zone l at
time step k. We also introduce the variable zl,k, which is equal to 1 if zone l
is occupied at time step k and equal to 0 otherwise. The meaning of zl,k will
become clearer when we describe the scheduling constraints in section 3.3. The
variables below are used in the HVAC model to determine how much energy is
needed to, for example, cool a zone from say 28 ◦C (82.4 ◦F) to 23 ◦C (73.4 ◦F).

Tunocc,lb + δlbzl,k ≤ Tl,k ≤ Tunocc,ub − δubzl,k (5)

TCA ≤ TSAl,k ≤ TSA,ub ∀l ∈ L, k ∈ K (6)

aSA,lb ≤ aSAl,k ≤ aSA,ub ∀l ∈ L, k ∈ K (7)

Constraints (5) describe the comfort bounds on zone temperature. When
a zone is occupied, the zone temperature must be within a specified comfort
interval (T occ,lb, T occ,ub) [(21 ◦C, 23 ◦C)]. At other times the zone temperature
can fluctuate more freely (Tunocc,lb, Tunocc,ub) [(16 ◦C, 28 ◦C)]. These bounds can
be set to reflect individual building guidelines. We use T occ,lb = Tunocc,lb+δlb and
T occ,ub = Tunocc,ub − δub, where δlb and δub are appropriately valued constants.
Constraints (6) and (7) ensure that the supply air temperature and the air flow
rate are bounded by the HVAC operational capacity. The supply air temperature
TSAl,k may supply conditioned air at temperature TCA, or heat the conditioned air

up to TSA,ub [40 ◦C]. The air flow rate can fluctuate between aSA,lb [0.108 kg/s]
and aSA,ub [5.0 kg/s], where the lower bound is determined by the ASHRAE
ventilation standard and the upper bound is reached when the dampers are
fully open.



The most involved constraints in the HVAC model come from modeling build-
ing thermal dynamics. We use a lumped resistor-capacitor (RC) network, which
is commonly used in [7–9] for constructing a model of the transient heat flow
through solid surfaces, such as walls and windows. To predict zone temperatures
we use the following parameters as inputs: (1) characteristics of the supply air
(flow rate and temperature), (2) thermal heat gain due to occupants, (3) thermal
heat gain due to solar radiation, and (4) outdoor temperature.

In Lim et al. [15], the temperature in a zone is affected by both internal and
external walls. In our experiments, however, we observed that the temperature
in a zone is mostly affected by the HVAC, occupants in the zone, and the heat
flow through external walls. The heat transfer from neighboring rooms through
the internal walls is negligible based on our building settings. Hence, in this
model we only consider external walls, that is, those with an outside facing.

The temperature constraints are presented below.
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(8)

Qpl,k = qpppl,k ∀l ∈ L, k ∈ K (9)

∆Hl,k = CpaaSAl,k (TSAl,k − Tl,k) ∀l ∈ L, k ∈ K (10)

Constraints (8) model the temperature dynamics in zone l when considering

a room with N external walls. The expression Ṫl,k =
Tl,k−Tl,k−1

∆t is the rate

of change in zone temperature and Ṫnl,k is the rate of change in temperature
of the external wall(s) n = 1, ..., N . Cl and Cnl respectively denote the thermal
capacitance of zone l and of the external wall n in zone l. Rnl and Rwl respectively
represent the thermal resistance of wall n and the windows separating zone
l with the outdoors. Constraints (9) determine the internal heat gain due to
occupants Qpl,k, which is calculated by multiplying the heat energy qp [75W] with
the number of occupants ppl,k. The value of the variable ppl,k is determined in
the scheduling model, which is described in the next section. Constraints (10)
determine the enthalpy of the heat supplied and extracted by the HVAC.

Note, constraints (4) and (10) contain bilinear terms aSAl,k T
SA
l,k and aSAl,k Tl,k,

which turns the problem into a mixed integer non-linear programming (MINLP)
problem. We use the reformulation method of McCormick [18], which relaxes the
original nonlinear equality constraints into a set of linear inequality constraints.



3.3 Scheduling model

Let M be a set of meetings. Each meeting m ∈ M has a duration τm, a set
of allowable start time steps Km ⊆ K, a set of allowable zones Lm ⊆ L and
a list of attendees Pm ⊆ A, where A is the set of all attendees. The sets Km

and Lm can be used to express a number of constraints, such as, room capacity
requirements, room equipment requirements, and time restrictions. Moreover, in
order to express meeting conflict constraints due to attendees we let N ⊆ 2M

be the set of meeting sets that have at least one attendee in common, that is
N = {Mi ⊆M | ∀m,m′ ∈Mi, Pm ∩ Pm′ 6= ∅}.

We want to determine xm,l,k, which is equal to 1 if meeting m is scheduled
to start at time step k in zone l and equal to 0 otherwise. The scheduling model
interacts with the HVAC model via the variables zl,k that indicate whether zone
l is occupied at time step k or not, and via the variables ppl,k that indicates the
number of people in zone l at time step k.

The constraints are as follows.∑
l∈Lm,k∈Km

xm,l,k = 1 ∀m ∈M (11)

∑
m∈M,k′∈Km:

l∈Lm, k−τm+1≤k′≤k

xm,l,k′ ≤ zl,k ∀l ∈ L, k ∈ K (12)

∑
m∈M,k′∈Km:

l∈Lm, k−τm+1≤k′≤k

xm,l,k′ × |Pm| = ppl,k ∀l ∈ L, k ∈ K (13)

∑
m∈ν,l∈Lm,k

′∈Km:
k−τm+1≤k′≤k

xm,l,k′ ≤ 1 ∀k ∈ K, ν ∈ N (14)

Constraints (11) require that all meetings must be scheduled exactly once. Con-
straints (12) state that no more than one meeting can occupy a zone at any
time. Observe that the right hand side in this constraint is either zero or one,
which limits the number of meetings to at most one. Also, when the left hand
side equals one then the zone must be occupied. Constraints (13) determine the
number of occupants in a zone ppl,k, which is a variable used in the HVAC model
and finally constraints (14) ensure that meetings with at least one attendee in
common cannot be scheduled in parallel.

One issue with the current model (and the one used in [15]) is that it can have
a large number of equivalent solutions when two or more meetings are identical.
For example, let meetings 1 and 2 have the same time windows, same number of
attendees, and same meeting conflicts. In this case, a solution in which x1,l,k = 1
and x2,l,k = 0 would be equivalent to one in which x1,l,k = 0 and x2,l,k = 1. In
order to avoid the computational cost of generating both solutions we reduce the
number of integer variables by defining meeting types. Meetings that are identical
are considered to be of the same meeting type. Since the number of meeting types
is smaller than the number of meetings, it allows for a more simplified model



that reduces symmetry. Without changing the model in its entirety we simply
redefine M to be the set of meeting requests and replace constraint (11) with the
one below to state that all meeting types must be scheduled ψm times, where
ψm represents the number of meetings of type m.∑

l∈Lm,k∈Km

xm,l,k = ψm ∀m ∈M (15)

4 Large Neighborhood Search

LNS is a local search metaheuristic, which was originally proposed by Shaw
[24]. In LNS, an initial solution is improved iteratively by alternating between a
destroy and a repair step. The main idea behind LNS is that a large neighborhood
allows the heuristic to easily navigate through the solution space even when the
problem is highly-constrained. As opposed to a small neighborhood, which may
make escaping a local minimum much harder.

An important decision in the destroy step is determining the amount of
destruction. If too little is destroyed the effect of a large neighborhood is lost, but
if too much is destroyed then the approach turns into repeated re-optimization.
As for the repair step, an important decision is whether the repair should be
optimal or not. An optimal repair will typically be slower than a heuristic, but
may potentially lead to high quality solutions in a few iterations.

Our LNS approach starts with an initial feasible solution, which is generated
using a greedy heuristic. First, this heuristic finds a feasible meeting schedule
by minimizing the number of rooms. Second, it determines the HVAC control
settings of supply air temperature and supply air flow rate to minimize energy
consumption given a fixed schedule. This two-stage approach allows us to come
up with an initial solution in reasonable time.

4.1 Destroy and Repair

Our LNS approach considers a neighborhood that contains a subset of the rooms
or zones. In particular, we destroy the schedule in two to four randomly selected
rooms. This forms a subproblem that can be solved effectively using MIP. When
destroying meetings in more than four zones, MIP performance can degrade
very quickly and even solving the linear programming relaxation can become
quite time consuming. The repair consists of solving an energy aware meeting
scheduling problem that is much smaller than the original problem. We do,
however, limit MIP runtime to avoid excessive search during a repair step, and
to avoid any convergence issues of the MIP problem. Setting a limit on runtime
means that we do not necessarily solve the subproblem to optimality, but given
that MIP solvers are anytime algorithms, we do improve solution quality in many
of the LNS iterations. If we find an improved solution, then the new schedule and
control settings are accepted. Otherwise, we maintain the solution that was just
destroyed. Given that the LNS starts with a feasible solution and does not accept



infeasible solutions, the solution remains feasible throughout the execution of the
algorithm.

We should note that we have experimented with a variety of neighborhoods.
These include: destroying all meetings in randomly selected time steps, a com-
bination of destroying all meetings in randomly selected rooms and time steps,
and simply destroying a set of randomly selected meetings. Our observation was
that none of these neighborhoods performed as well as destroying all meetings
in a number of randomly selected rooms. Destroying selected rooms means that
meetings could be rescheduled at any time during the day. This allows the model
to optimize supply air flow rate and supply air temperature over all the time
steps. Destroying selected time steps means that meetings may switch rooms,
but may need to be scheduled to the same time step due to time window re-
strictions. This limits the optimization of supply air flow rate and supply air
temperature due to the HVAC control constraints on neighboring time steps.

4.2 LNS Parameter Tuning

The parameters that govern the behavior of the LNS heuristic are parameters
determining the number (2, 3, or 4) of rooms to destroy and the MIP runtime
limit for the repair step. The probabilities on the number of rooms to destroy
are defined as a 3-tuple with values ranging between [0,1] and the MIP runtime
limit is a parameter with values ranging between 1 and 10 seconds.

While it is possible to reason about certain parameters and their impact on
overall performance, there are numerous values that these parameters can take
on. Even though we consider only 4 parameters, it is impossible to try all possible
configurations because of their continuous domains. Note, even with discretized
domains with reasonable level of granularity it remains impractical to try out
all configurations. As a result, we use the automated algorithm-configuration
method called Sequential Model-based Algorithm Configuration (SMAC) [11] to
optimize these parameters.

SMAC can be used to train parameters in order to minimize solution runtime,
or to optimize solution quality. In our case, we fix the runtime and minimize
energy consumption. We generate problem instances with different degrees of
constrainedness and train the parameters to achieve the average best quality for
all input scenarios.

Given a list of training instances and corresponding feature vectors, SMAC
learns a joint model that predicts the solution quality for combinations of pa-
rameter configurations and instance features. These information are useful in se-
lecting promising configurations in large configuration spaces. For each training
instance we computed up to 17 features, including: (1) number of constraints, (2)
number of variables, (3) number of non-zero coefficients, (4) number of meetings,
(5) number of meeting types, (6) scheduling flexibility, (7) average duration of
meetings, (8) number of meeting slots per day, (9) total number of meeting slots,
(10)-(14) number of rooms in up to 5 building types, and (15)-(17) minimum,
maximum, and average difference between outdoor temperature and tempera-
ture comfort bounds. These features reflect problem characteristics and are used



by SMAC to estimate performance across instances and generate a set of new
configurations.

Given a list of promising parameter configurations, SMAC compares them
to the current incumbent configuration until a time limit is reached. Each time
a promising configuration is compared to the incumbent configuration, SMAC
runs several problem instances until it decides that the promising configuration
is empirically worse or at least as good as the incumbent configuration. In the
latter case the incumbent is updated. In the end, the configuration selected by
SMAC is generalized to all problem instances in the training set.

5 Experimental Results

Before describing our main results, we first point out the typical behavior of solv-
ing energy aware meeting scheduling as a MIP. Figure 2 shows the performance
of the MIP approach on two typical problem instances when given 2 hours of
runtime. In general, MIP convergence on larger problems is slow and sometimes
MIP fails to converge even after 2 hours. This is exactly why we developed the
LNS approach. The typical performance of the LNS approach is also given in
Figure 2. In the figure, LNS was given only 15 minutes of runtime but it is
capable of returning significantly better results when compared to MIP.

Fig. 2: Typical performance of MIP (2 hours) and LNS (15 minutes) on two
benchmark instances.

We analyze our LNS approach by considering 8 problem sets. Each problem
set contains 10 problem instances that we built by adding energy related in-
formation to instances extracted from the PATAT timetabling dataset [19]. The
problem sets differ by the number of meetings (M) and the number of rooms (R).
Specifically, our problem sets are referred to as 20M-20R, 50M-20R, 100M-20R,
200M-20R, 50M-50R, 100M-50R, 200M-50R, and 500M-50R, where 20M-20R
represents the problem set with 20 meetings and 20 rooms. All our experiments
were run on a cluster that consists of a 2 × AMD 6-Core Opteron 4334, 3.1GHz
with 64GB memory.



Building Types External Wall Internal Wall Window
(TR) (TC) (TR) (TC) (TR)

1 3 120 1.5 120 0.5

2 3 140 1.5 140 0.5

3 3 240 1.5 240 0.5

4 6 120 3 120 0.5

5 6 240 3 240 0.5

Table 1: Total thermal resistance (TR)
(
m2K
W

)
and thermal capacitance (TC)(

KJ
m2K

)
of the walls and the window for five types of zones. R and C of each wall

can be derived by dividing TR and multiplying TC with area size respectively.

In each problem set we must schedule up to 500 meetings whose durations
are 1 or 1.5 hours. The meetings must be scheduled over a period of 5 summer
days. The available rooms are located in 5 buildings, that differ by their thermal
resistance and capacitance as specified in Table 1. We use a 1 × 4 zone layout
where each zone has the same thermal resistance and capacitance as its neigh-
boring zones. Moreover, all rooms have the same geometric area of 6×10×3 m3

with a window surface area of 4 × 2 m2 and a capacity of 30 people. The solar
gain ranges from 50 to 350 W/m2 during the day. All meetings have between 2
and 30 attendees and we vary the scheduling flexibility for each meeting with an
allowable time range of one or two random days (between 09:00-17:00) within
the 5 summer days.

First, we used SMAC to tune the parameters for all 80 instances. However,
it is possible that one set of parameter configurations might not produce best
results across all problem sets. For example, Malitsky et al. [17] observed that
instance specific algorithm configuration finds good quality solutions for large
sized instances in limited time. Hence, second we independently tuned the pa-
rameters for the 8 problem sets. In each case, we used 0.33, 0.33, and 0.34 as the
default destroy probabilities and 5 seconds for the default MIP runtime during
each repair step. SMAC trains on 60% of the instances and cross-validates with
the remaining 40%.

On average, SMAC generated 300 configurations for each problem set. Figure
3 shows the result of the best parameter configurations as determined by SMAC
for all 80 instances (AllM-AllR), and for the each of the 8 problem sets. In
the end, a MIP runtime of 8.5 seconds, and probabilities of 0.64, 0.28, 0.08 to
destroy 2, 3, and 4 rooms respectively were determined to be the best settings
by SMAC for all 80 instances. However, the best parameter configurations do
vary somewhat for the different problem sets.

Figure 4 shows the performance improvement of MIP and LNS compared to
the initial feasible solution, which is referred to as the heuristic solution (HS),
over 500 runs. For each run, both the MIP and LNS approach were seeded with
HS as an initial solution. Both MIP and LNS were given the same runtime limit of
15 minutes and HS was given 60 seconds. LNS was executed using the parameter
configurations that were determined best for each problem set. The results show
that LNS significantly improves over MIP when given limited runtime. Overall,



Fig. 3: Parameter configurations as determined by SMAC.

the improvement of LNS over MIP is between 14% and 36%. Note that in the
largest problem instances, those in 500M-50R, MIP often fails to find even a
slight improvement over the given initial solution HS in 15 minutes.

We reran all problem instances in Figure 4 using the AllM-AllR parameter
settings. In this case, the performance of LNS decreased by 1 to 2%. Hence,
instance specific algorithm configuration did have some impact, but even without
it LNS performed significantly better than MIP.

Fig. 4: Performance improvement of MIP and LNS over heuristic solution (HS).
MIP and LNS runtime 15 minutes.

Figure 5 provides insight into the optimality gap of the MIP approach and
in the variation in solution quality. The MIP optimality gap after 15 minutes
runtime is shown on the left. Each box shows the median and the upper and
lower quantiles of the optimality gap. The endpoints indicate the maximum
and minimum. As observed previously the MIP approach fails to converge on
the larger problem instances. Moreover, as can be seen from the figure, MIP’s



performance substantially degrades as problems become more constrained and
exhibit a higher number of meetings to number of rooms ratio.

The variation in solution quality is shown on the right. The median of LNS
always falls below the lower quantile of MIP. We note, however, that for problem
instances in 20M-20R, MIP and LNS have almost similar performance. For even
smaller problem instances MIP tends to be very effective, which is exactly why
we have combined the two. We believe that the combination of LNS and MIP
is especially good when considering highly constrained problems. LNS is used
destroy and repair the solution space and MIP is used to find good local solution,
possibly optimal solution, in a short amount of time.

Fig. 5: MIP optimality gap (left) and HS/LNS/MIP solution values (right)

6 Conclusions

In this paper we extend the work by Lim et al. [15], which introduced a MIP
model for energy aware meeting scheduling. This previous work shows that com-
bining HVAC control with meeting scheduling can lead to substantial improve-
ments in energy efficiency. The MIP model that is described, however, only
solves problem instances that involve a small number of meetings and rooms.
We combine MIP with LNS in order to scale to larger problems.

We developed a heuristic to generate an initial feasible solution quickly, which
we use to warm start both the MIP and LNS approach. In our experiments,
the most effective neighborhood was one that destroys and repairs all meetings
scheduled in 2 to 4 rooms. The resulting subproblem was small enough for MIP
to solve to (near) optimality and, at the same time, large enough to explore
alternate solutions. We studied the performance of MIP and LNS and demon-
strated the potential of our LNS approach for effectively tackling large-scale
HVAC control and meeting scheduling problems. The LNS achieves 14 to 36%
better energy savings than the MIP approach when both given a runtime of 15
minutes. In order to provide an absolute sense of the solution quality, we plan
to evaluate our schedules with the EnergyPlus simulator.

We are interested in exploring new algorithmic approaches that allows us
to scale even further. We are particularly interested in investigating symmetry



breaking in MIP. Symmetry leads to a large number of equivalent solutions,
which causes branch-and-bound to be ineffective. While we dealt with symme-
tries due to meetings with similar characteristics by introducing meeting types,
symmetries still exists in our MIP formulation due to rooms with similar char-
acteristics. Introducing room types, however, may not be possible because room
temperature at time step t is dependent on time step t − 1. In future work, we
aim to identify branching strategies that can better deal with symmetries in our
MIP formulation.

Moreover, we are also interested in investigating an online stochastic ap-
proach to our HVAC control and meeting scheduling problem. Such an ap-
proach can deal with current requests, future requests, changes and cancelation
of requests, but also with the uncertainty around outdoor air temperature and
weather conditions.

Acknowledgments

Thanks to Pascal Van Hentenryck for pointing us to optimization problems in
the smart buildings space and to Philip Kilby for helpful discussions on LNS.
This work is supported by NICTA’s Optimisation Research Group as part of the
Future Energy Systems project. NICTA is funded by the Australian Govern-
ment through the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

References

1. ASHRAE: ASHRAE handbook: Fundamentals. American Society of Heating, Re-
frigerating and Air-Conditioning Engineers (2013)

2. Bloomfield, D., Fisk, D.: The optimisation of intermittent heating. Building and
Environment 12(1), 43–55 (1977)

3. Crawley, D.B., Pedersen, C.O., Lawrie, L.K., Winkelmann, F.C.: Energyplus: En-
ergy simulation program. ASHRAE Journal 42, 49–56 (2000)

4. Danna, E., Perron, L.: Structured vs. unstructured large neighborhood search: A
case study on job-shop scheduling problems with earliness and tardiness costs.
In: Proc. International Conference on the Principles and Practice of Constraint
Programming (CP). pp. 817–821 (2003)

5. Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing bike
sharing systems. In: Proc. International Conference on the Principles and Practice
of Constraint Programming (CP). pp. 758–773 (2013)

6. EIA: US Department of Energy, CBECS detailed tables (2003),
http://www.eia.gov/consumption/commercial/

7. Gouda, M., Danaher, S., Underwood, C.: Low-order model for the simulation of
a building and its heating system. Building Services Engineering Research and
Technology 21(3), 199–208 (2000)

8. Gouda, M., Danaher, S., Underwood, C.: Building thermal model reduction using
nonlinear constrained optimization. Building and Environment 37(12), 1255–1265
(2002)



9. Goyal, S., Barooah, P.: A method for model-reduction of non-linear thermal dy-
namics of multi-zone buildings. Energy and Buildings 47, 332–340 (2012)

10. Goyal, S., Ingley, H.A., Barooah, P.: Occupancy-based zone-climate control for
energy-efficient buildings: Complexity vs. performance. Applied Energy 106, 209–
221 (2013)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Proc. International Conference on Learning
and Intelligent Optimization (LION). pp. 507–523 (2011)

12. Kwak, J.y., Kar, D., Haskell, W., Varakantham, P., Tambe, M.: Building thinc: User
incentivization and meeting rescheduling for energy savings. In: Proc. International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS). pp. 925–
932 (2014)

13. Kwak, J.y., Varakantham, P., Maheswaran, R., Chang, Y.H., Tambe, M., Becerik-
Gerber, B., Wood, W.: Tesla: An energy-saving agent that leverages schedule flex-
ibility. In: Proc. International Conference on Autonomous Agents and Multi-agent
Systems (AAMAS). pp. 965–972 (2013)

14. LeBras, R., Dilkina, B.N., Xue, Y., Gomes, C.P., McKelvey, K.S., Schwartz, M.K.,
Montgomery, C.A.: Robust network design for multispecies conservation. In: Proc.
AAAI Conference on Artificial Intelligence (AAAI). pp. 1305–1312 (2013)
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